使用维护

机械设备磨损 - 疲劳磨损机理及对策

编辑:维修工 来源:装备保障管理网 2017-09-11 我要评论 浏览量:

机械设备磨损 - 疲劳磨损机理及对策 疲劳磨损是摩擦表面材料微观体积受循环接触应力作用产生重复变形,导致产生裂纹和分离出微片或颗粒的一种磨损。 疲劳磨损根据其危害程度可

机械设备磨损 - 疲劳磨损机理及对策

机械设备磨损 - 疲劳磨损机理及对策

疲劳磨损是摩擦表面材料微观体积受循环接触应力作用产生重复变形,导致产生裂纹和分离出微片或颗粒的一种磨损。

疲劳磨损根据其危害程度可分为非扩展性疲劳磨损和扩展性疲劳磨损两类。

1.疲劳磨损机理

疲劳磨损的过程就是裂纹产生和扩展的破坏过程。根据裂纹产生的位置,疲劳磨损的机理有两种情况:

(1)滚动接触疲劳磨损 在滚动接触过程中,材料表层受到周期性载荷作用,引起塑性变形、表面硬化,最后在表面出现初始裂纹,并沿与滚动方向呈小于45。的倾角方向由表向里扩展。

表面上的润滑油由于毛细管的吸附作用而进入裂纹内表面,当滚动体接触到裂1:3处时将把裂口封住,使裂纹两侧内壁承受很大的挤压作用,加速裂纹向内扩展。在载荷的继续作用下,形成麻点状剥落,在表面上留下痘斑状凹坑,深度在0.1~0.2mm以下。

(2)滚滑接触疲劳磨损 根据弹性力学,两滚动接触物体在表面下0.786b(b为平面接触区的半宽度)处切应力最大。该处塑性变形最剧烈,在
周期性载荷作用下的反复变形使材料局部弱化,并在该处首先出现裂纹,在滑动摩擦力引起的切应力和法向载荷引起的切应力叠加作用下,使最大切应力从0.786b处向表面移动,形成滚滑疲劳磨损,剥落层深度一般为0.2~0.4mm。

2.减少或消除疲劳磨损的对策

疲劳磨损是由于疲劳裂纹的萌生和扩展而产生的,因此,减少或消除疲劳磨损的对策就是控制影响裂纹萌生和扩展的因素,主要有四个方面:

(1)材质钢中存在的非金属夹杂物,易引起应力集中,这些夹杂物的边缘最易形成裂纹,从而降低材料的接触疲劳寿命。

材料的组织状态对其接触疲劳寿命有重要影响。通常,晶粒细小、均匀,碳化物成球状且均匀分布,均有利于提高滚动接触疲劳寿命。轴承钢经处理后,残留奥氏体越多,针状马氏体越粗大,则表层有益的残余压应力和渗碳层强度越低,越容易发生微裂纹。

在未溶解的碳化物状态相同的条件下,马氏体中碳的质量分数在0.4%~0.5%左右时,材料的强度和韧性配合较佳,接触疲劳寿命高。对未溶解的碳化物,通过适当热处理,使其趋于量少、体小、均布,避免粗大或带状碳化物出现,都有利于避免疲劳裂纹的产生。

硬度在一定范围内增加,其接触疲劳强度将随之增大。例如,轴承钢表面硬度为62HRC左右时,其抗疲劳磨损能力最大。对传动齿轮的齿面,硬度在58~62HRC范围内最佳,而当齿面受冲击载荷时,硬度宜取下限。此外,两个接触滚动体表面硬度匹配也很重要。例如,滚动轴承中,滚道和滚动元件的硬度相近,或者滚动元件比滚道硬度高出10%为宜。

(2)接触表面粗糙度试验表明,适当降低表面粗糙度可有效提高抗疲劳磨损的能力。例如,滚动轴承表面粗糙度由Ra0.40um降低到Ra0.20u m,寿命可提高2~3倍;由Ra0.20um降低到Ra0.10um,寿命可提高1倍;而降低到Ra0.05um以下,对寿命的提高影响甚小。

表面粗糙度要求的高低与表面承受的接触应力有关,通常接触应力大,或表面硬度高时,均要求表面粗糙度低。

(3)表面残余内应力 一般来说,表层在一定深度范围内存在有残余压应力,不仅可提高弯曲、扭转疲劳强度,还能提高接触疲劳强度,减小疲劳磨损。但是,残余压应力过大也有害。

(4)其他因素润滑油的选择很重要,润滑油粘度越高越利于改善接触部分的压力分布,同时不易渗入表面裂纹中,这对抗疲劳磨损均十分有利;而润滑油中加入活性氯化物添加剂或是能产生化学反应形成酸类物质的添加剂,则会降低轴承的疲劳寿命。

机械设备装配精度影响齿轮齿面的啮合接触面的大小,自然也对接触疲劳寿命有影响。具有腐蚀作用的环境因素对疲劳往往起有害作用,如润滑油中的水。

 

TPM,点检,班组建设,管理能力咨询培训@左明军老师.微信:13808969873

1.凡“装备保障管理网”的原创稿件,版权均属本站所有,转载请注明作者和来源,不尊重原创的行为我们将追责;2.本站旨在宣传助力中国工业2025,会员转载文章如牵扯版权问题请与我们联系,我们将在第一时间处理,谢谢!

精益导航-工业设备人互联网商学院,在线免费学技能
网友观点网友观点
关注我们
华企工业智库
企业管理培训课程
关注微信
手机网站
关于我们